- Buat rangkaian sesuai kondisi dan modul pada software proteus
- Buka software STM32CubeIDE, atur dan pilih STM32F103C8T6 untuk dikonfigurasikan dan diinisialisasi
- Konfigurasikan pin input/output microcontroller pada software STM32CubeIDE
- Generate Code untuk mendapatkan file C codingan
- Masukkan algoritma pemograman berdasarkan cara kerja kondisi rangkaian
- Konversikan file ke dalam ekstensi .hex
- Masukkan library sensor pada sensor dan file codingan dalam bentuk .hex pada microcontroller di software proteus
- Jalankan rangkaian
- Selesai
b) Hardware dan Diagram Blok[Kembali]
c) Rangkaian Simulasi dan Prinsip Kerja[Kembali]
d) Flowchart dan Listing Program[Kembali]
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
int main(void)
{
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
uint8_t ir_status = HAL_GPIO_ReadPin(GPIOB, IR_Pin); // Membaca IR sensor
uint8_t touch_status = HAL_GPIO_ReadPin(GPIOB, TCH_Pin); // Membaca IR sensor (PB10)
if (ir_status == GPIO_PIN_SET && touch_status == GPIO_PIN_RESET) {
HAL_GPIO_WritePin(GPIOB, R3_Pin, GPIO_PIN_SET); // Nyalakan LED
HAL_GPIO_WritePin(GPIOA, R1_Pin, GPIO_PIN_SET); // Nyalakan LED
} else {
HAL_GPIO_WritePin(GPIOA, R1_Pin, GPIO_PIN_RESET); // Matikan LED
HAL_GPIO_WritePin(GPIOB, R3_Pin, GPIO_PIN_RESET); // Matikan LED
}
HAL_Delay(10); // Delay kecil untuk stabilisasi pembacaan sensor
}
}
/* USER CODE END 3 */
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, R1_Pin|R2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(R3_GPIO_Port, R3_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : R1_Pin R2_Pin */
GPIO_InitStruct.Pin = R1_Pin|R2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : R3_Pin */
GPIO_InitStruct.Pin = R3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(R3_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : IR_Pin TCH_Pin */
GPIO_InitStruct.Pin = IR_Pin|TCH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Percobaan 2 Kondisi 5
Buatlah Rangkaian seperti gambar percobaan 2 dengan kondisi ketika sensor Infrared
mendeteksi gerakan dan sensor touch tidak mendeteksi sentuhan maka LED RGB akan
menampilkan warna Ungu (Magenta).
Download folder rangkaian, listing program, dan library [klik]
0 Komentar