- Buat rangkaian sesuai kondisi dan modul pada software proteus
- Buka software STM32CubeIDE, atur dan pilih STM32F103C8T6 untuk dikonfigurasikan dan diinisialisasi
- Konfigurasikan pin input/output microcontroller pada software STM32CubeIDE
- Generate Code untuk mendapatkan file C codingan
- Masukkan algoritma pemograman berdasarkan cara kerja kondisi rangkaian
- Konversikan file ke dalam ekstensi .hex
- Masukkan library sensor pada sensor dan file codingan dalam bentuk .hex pada microcontroller di software proteus
- Jalankan rangkaian
- Selesai
b) Hardware dan Diagram Blok[Kembali]
- STM32F103C8
c) Rangkaian Simulasi dan Prinsip Kerja[Kembali]
d) Flowchart dan Listing Program[Kembali]
- Flowchart
- Listing Program
#include "main.h"
ADC_HandleTypeDef hadc1; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2;
void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_TIM1_Init(void); static void MX_TIM2_Init(void);
int main(void)
{
HAL_Init(); SystemClock_Config();
MX_GPIO_Init(); MX_ADC1_Init(); MX_TIM1_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim1,
TIM_CHANNEL_1); // Motor PWM HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); // Buzzer PWM HAL_ADC_Start(&hadc1);
uint8_t buzzer_enabled
= 1; uint32_t last_buzzer_change = 0; uint8_t
buzzer_freq_index = 0;
const uint32_t buzzer_periods[] = {143999, 71999, 47999}; // Frekuensi berbeda
// Threshold (dari rendah → sedang → tinggi)
const uint16_t THRESH_LOW = 1500; const uint16_t THRESH_MID = 3000;
while (1)
{
HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1,
10); uint32_t adc_val = HAL_ADC_GetValue(&hadc1);
// --- Motor
Control ---
if (adc_val < THRESH_LOW)
{
HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 200); // Lambat
}
else if (adc_val < THRESH_MID)
{
HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 600); // Sedang
}
else
{
HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 1000);
// Cepat
}
// --- Buzzer
Logic ---
if (adc_val < THRESH_LOW && buzzer_enabled)
{
// Ubah
frekuensi buzzer setiap 500ms
if (HAL_GetTick() - last_buzzer_change
>= 500)
{
last_buzzer_change
= HAL_GetTick(); buzzer_freq_index = (buzzer_freq_index + 1) % 3;
uint32_t period = buzzer_periods[buzzer_freq_index];
HAL_TIM_SET_AUTORELOAD(&htim2, period);
HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, period / 2); // 50% duty
}
}
else
{
HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Matikan buzzer
}
// --- Button Logic (PB0
ditekan = nonaktifkan buzzer) ---
if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0) == GPIO_PIN_SET)
{
buzzer_enabled = 0;
HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Paksa matikan
buzzer
}
HAL_Delay(10);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct
= {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct
= {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
RCC_OscInitStruct.OscillatorType
= RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
static
void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0}; hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode
= ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel
= ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1,
&sConfig) != HAL_OK)
{
Error_Handler();
}
}
static
void MX_TIM1_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig
= {0}; TIM_OC_InitTypeDef sConfigOC
= {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
htim1.Instance
= TIM1; htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger
= TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) !=
HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity
= TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState =
TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState
= TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) !=
HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode
= TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState =
TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) !=
HAL_OK)
{
Error_Handler();
}
HAL_TIM_MspPostInit(&htim1);
}
static
void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim2.Instance
= TIM2; htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision
= TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger
= TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) !=
HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) !=
HAL_OK)
{
Error_Handler();
}
HAL_TIM_MspPostInit(&htim2);
}
static
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
HAL_RCC_GPIOD_CLK_ENABLE();
HAL_RCC_GPIOA_CLK_ENABLE();
HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure
GPIO pin : PB0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB,
&GPIO_InitStruct);
}
void Error_Handler(void)
{
disable_irq(); while (1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t
line)
{
}
#endif /* USE_FULL_ASSERT */
Percobaan 3 Kondisi 1
Buatlah rangkaian seperti gambar pada percobaan 3, Jika nilai potensiometer di bawah threshold 1500 maka motor DC berputar dengan duty cycle 10% dan buzzer berbunyi dengan frekuensi rendah; jika nilai di atas threshold 3000 maka motor DC berputar dengan duty cycle 90% dan buzzer mati
Download folder rangkaian [klik]
Download video simulasi [klik]
0 Komentar